& Apple Lisa Computer: MacWorks Plus Developement Information

& Apple Lisa Computer
Technical Information

i

S
Apple Lisa Computer:
MacWorks Plus
Developement
Information

Lisa Computer:
1983 - 1985

Printed by: Macintosh Picture Printer 0.0.5 1999-01-11 Printed: 1999-02-01 18:54:45
L & Apple Lisa Computer Technical Information Page 0000 of 0005 |

& Apple Lisa Computer: MacWorks Plus Developement Information

Apple Lisa Personal Computer
1983 to 1985

MacWorks Plus
evelopment Info

Sasessverseseens
G

£
eees e sesseeneeanes:

eosrereve
e e

e ee

X

AU A b R LU O T SO I o oAk

O

Y XN RO

09000000
AN
easeesersers

20 OC /04 DO OO 204

e

Leael 3

“LisaMacWorksPlusDevInfo 0.PICT” 246 KB 1999-02-01 dpi: 360h x 363v pix: 2539h x 3236v
L & Apple Lisa Computer Technical Information Page 0001 of 0005 |

& Apple Lisa Computer: MacWorks Plus Developement Information

MacWorks Plus:
Making A Lisa Speak
Macintosh

Apple’s Lisa computer never had a chance. Its windows and mice
were ahead of their time. A nice sports car cost less than a
minimally-configured Lisa system. And the most significant
obstacle, which shaped Lisa’s decline and recent return, was
that Steve Jobs didn’t want it, and for a very good reason.
Jobs’ pet project, code-named Macintosh, was introduced one
year after the Lisa at one-third the price.

But despite the Lisa’s dismal marketing history, it has
persevered through the efforts of Sun Remarketing in Logan,
Utah, and a handful of other organizations, the Lisa continues
to be sold, serviced and supported. My role in this effort has
been to develop for Sun Remarketing a new Lisa operating
system called MacWorks Plus. MacWorks Plus allows the Lisa
to perfectly emulate a Macintosh Plus. It is the successor to a
program called MacWorks, which was an imperfect emulation
of a 64K ROM Macintosh. As this is a topic of natural interest
to the Mac technical community, this article will analyze how
the old MacWorks functioned, and then address some of the
obstacles encountered in developing a new one.

Historical Background A It is asserted in both the Lisa user
community and some offices in Cupertino that Apple wants to
kill the Lisa. Though hindsight clearly provides the empirical
basis for such a claim, it is no longer true. Apple’s new
willingness to permit the development of MacWorks Plus is

a welcome confirmation of John Sculley’s changing of

the guard.

The survival of the Lisa has always hinged on the Macin-
tosh. Early in 1984 it was recognized that the Lisa Office
System alone couldn’t finish off Apple’s inventory of Lisas:
the Lisa would have to speak Macintosh. And so the spare
time project of an Apple employee named Rich Castro was
given official status as MacWorks. This was an implementa-
tion of the 64K ROM and was sold in conjunction with an
upgrade kit which converted the Lisa’s rectangular pixels to
square ones. The Lisa managed to remain attractive because
you could put up to two megabytes of memory in it as well as
a 10MB hard disk This was at the time that the Mac sported a

¢f4385

Charles T. Lukaszewski
Sun Remarketing, Inc.

meagre 128K of memory, hard disks were nowhere in sight,
and the “Please Insert The Disk” message was a good friend
to us all.

With the introduction of the Mac Plus, however, the Lisa
lost virtually all of its remaining competitive edge. MacWorks
was not capable of supporting HFS, Apple Share or the
increasing number of programs which counted on facilities in
the 128K ROM and new System Software. These problems
were felt most acutely at Sun Remarketing. Sun is the only
company in the world authorized by Apple to sell and service
its out-of-production equipment. For some time it had also
been a sounding board for all of the complaints about the Lisa.
Something had to be done.

MacWorks A The original MacWorks was the first port of the
Macintosh Operating System to another computer. The
architectures of the Lisa and the Macintosh are radically
different: the Lisa had a memory management unit that
supported context switching and logical memory mapping,
but the Macintosh used hard-mapped address lines; the Lisa
had three expansion slots with DMA support, while the
Macintosh had none; the Lisa had an intelligent keyboard
processor with programmable power-on and power-off, but
the Mac's keyboard was about as smart as an aardvark. To
make the Lisa speak Macintosh, it proved necessary to throw
away the Macintosh hardware interface and provide a

new one.

Of course, Apple already had a hardware interface for the
Lisa. In fact, they had two to choose from: the Lisa Office
System/Lisa Workshop interface and the Monitor interface.
The Monitor Operating System was the Lisa’s first develop-
ment environment. [t was essentially a port of the Apple ///
Pascal Workshop, and as such it inherited the same text-only
output with single-letter command lines that we all knew and
loved eight years ago. Monitor OS became Apple’s choice for
the MacWorks hardware interface for a very good reason: the
structure of its device drivers and their [/O command blocks
was almost identical to that used in the Mac.

64 MacTech Quarterly Spring 1989

“LisaMacWorksPlusDevinfo 1.PICT” 414 KB 1999-02-01 dpi: 360h x 363v pix: 2688h x 3733v

L & Apple Lisa Computer Technical Information

Page 0002 of 0005 |

& Apple Lisa Computer: MacWorks Plus Developement Information

So it was that the Monitor device drivers, some freshly-
written interrupt handlers and the source code to the Mac
Toolbox were united into a product called MacWorks. At this
point Apple also made some design changes to the Lisa and
began to sell itas the Macintosh XL. It is important to note
here that these decisions about the design of MacWorks
established specific limits on its performance and its compati-
bility with Mac applications, and set the stage for the develop-
ment of MacWorks Plus.

The Monitor Operating System A In order to get any type of
Macintosh emulator running, a system must go through some
type of bootstrap and load procedure to install the emulator
and protect it from being detected and /or overwritten. Also,
the software environment must be made to look as much as
possible like that on a Mac before starting the emulator.

MacWorks did not address this problem very well.
Because the Monitor OS ran underneath MacWorks, certain
memory regions had to remain intact across all soft restarts.
Several of these regions were in low memory where the Mac
normally locates some of its own information, including the
trap dispatch tables. Furthermore, Monitor wasted memory
because its file management kernel was required during
bootup but then sat idle while MacWorks used its own. This
difficulty can be understood best by analyzing the bootstrap
technique used by Monitor.

The Lisa is the last Apple computer that did not include an
operating system in the ROM. When a Lisa is powered on,
there is only enough code in the ROM to perform diagnostic
tests and boot device selection. Of course, this is the ideal
machine on which to port the Mac OS, especially given the
ease with which the Lisa’s MMU can map the emulator’s
physical memory to the $00400000 range where you would
expect iton a real Macintosh. Once a boot device is selected,
the ROM completes stage zero of the boot process by loading
sector zero from that device Lo address $00020000 and
beginning execution.

Under Monitor & MacWorks, the 512 bytes of code in
sector zero must in turn load the initial operating system
kernel. This kernel may be located anywhere on the disk, so it
is necessary to put a pointer somewhere that the stage one
bootcode can find. This is accomplished by putting an offset
into the second word of the second sector of the disk. The
stage one bootcode retrieves this value, subtracts two, and
positions the device at this sector. It proceeds to load eight
sectors to address $00020800 and Lransfers control.

FreeHand illustiation by Robert Williamson

MacWorks Plus

Monitor’s boot process is extremely flexible, but also
extremely dependent on specific files. Every bootable Monitor
disk contains at least four files: MON.LOADER,
MONITOR.OBJ, CONFIG.DATA and BOOTFILES.DATA. The
MON.LOADER file contains those cight sectors that are
loaded by the stage one bootcode, and the use of the offset in
sector two is an inexpensive way to avoid a directory search.
MON.LOADER, however, does contain directory search code,
and uses it to pull in a sequence of files. First, the
CONFIG.DATA file is read into memory page one. This
defines several of the initial low-memory globals required by
Monitor. Second, MONITOR.OB] is read much higher in
memory. Finally, BOOTFILES.DATA is read. In this clear-text
file are a sequence of filenames which are to be read to com-
plete the boot process. An entry in this file consists of a one-
byte file type field and a fifteen character name. These files are
1oaded by their order of appearance. When this is complete,
control transfers to MONITOR.OBJ and the Monitor OS starts.

While this approach works, it imposes unacceptable
resource limitations on a MacOS port. The most obvious
difficulty is that you end up with two file-oriented operating
systems, one of which is never used after startup. In addition
to the memory wasted by the unused code, a great deal of
disk space is idled for overhead like directories for that second
operating system. This is of particular concern on a hard disk,
since some type of partitioning scheme is going to be required
to separate the operating systems. But what does MacWorks
do? Why, it just copies a complete image of its 400K disk onto
the hard disk, and then takes an extra 100K for good measure.
As MacWorks only requires about 100K to begin with, the
waste is enormous.

This approach also creates performance limitations
because every Mac application has to go through two levels of
calls to do hardware dependent tasks. This includes drawing
to the screen as well as sound generation and storage
device [/0.

The Macintosh Operating System A If you've ever seriously
perused the list of low-memory system globals in Inside
Macintosh, it becomes obvious that the Mac Operating System
is really portable. “Just look at all of those hardware depend-
ent parameters, Beaver!” “Gosh, Wally, there’s screen size and
pixel resolution and device addresses and interrupt vectors
and memory layout and everything. This port'll be easier than
eating brussels sprouts!”

avanagy

Spring 1989 MacTech Quarterly 65

- : “LisaMacWorksPlusDevInfo 2.PICT” 448 KB 1999-02-01 dpi: 360h x 363v pix: 2716h x 3791v
| @ Apple Lisa Computer Technical Information Page 0003 of 0005
S

& Apple Lisa Computer: MacWorks Plus Developement Information

In all seriousness, Apple has done a fantastic job of
developing an operating system which is consistent across an
entire line of computer systems, and which has enormous
potential for modification and expansion. Indeed, these
qualities have been exploited by Apple from the first. Apple
has chosen a relatively expensive method by which to achieve
this level of consistency: a centralized configuration database
in the Jow-memory of each Macintosh. It is expensive because
it costs cycles to look up information that isn’t hard-coded.
But who cares about expense when it also makes a reconfigu-
ration of that operating system on a different architecture
extremely simple?

This is not to say that Apple has taken all of the work out
of doing an operating system port. It is a time consuming and
often frustrating task. However, they have made it possible to
cleanly separate a hardware dependent kernel from the rest of
the MacOS. If one replaces this kernel with one for a different
computer and sets the low-memory globals appropriately, the
rest needs no modification. This is what Apple did for the
original MacWorks.

MacWorks Plus! A Late in 1987 it was clear that something had
to be done about MacWorks. In addition to the problems
already described, the fact that it was based on the 64K ROM
from the original Macintosh meant that it could neither run
System Software beyond the 5.3/3.2 release, nor could it run
many applications which depended on later versions of the
ROM and System Software. Also, Sun Remarketing had devel-
oped an 800K floppy disk drive for the Lisa as well as HFS,
but the modifications took up additional memory and
approximately doubled the system overhead on a hard disk.
Worse yet, MacWorks would only use 32MB of Sun'’s new
40MB internal hard disk.

Today, MacWorks Plus has eliminated every one of the
performance and compatibility problems that plagued its
predecessor. The vital statistics speak for themselves. Overall
operating system spced has been improved 25% and Quick-
draw™ operations run 30% to 40% faster. System Software
6.0.2 runs perfectly, including MultiFinder™. Applications
like MPW 2.0.2, HyperCard 1.2.1, Tops 2.0.1, Lightspeed C 3.0,
TMon 2.81, FullWrite 1.0, Excel 1.5, Crystal Quest 2.2 and
many more also work perfectly. In addition, MacWorks Plus
supports a SCSl interface and disk drives of any size.

The enhancements in MacWorks Plus can be divided into
three categories: bootcode, hardware interface and operating
system. The bootcode was completely rewritten, and as a
result we were able to eliminate wasted code in memory and
simultaneously cut disk consumption down to 200K. The
multi-file approach that the Monitor OS used was discarded
in favor of a single stage two loader which handles memory
management, machine initialization and loading of the
MacWorks Plus ROM Image. There are additional advantages
to this solution. First, operating system globals do not need to
be preserved, so soft restarts are free to clear all of the
available memory. Aside from being good programming
practice to erase all signs of a previous operating system, this
is crucial to compatibility for some programs. Second, and
even more important, we could put every system global in its
proper location. For example, the trap dispatch tables, which
were located at $00411000 under MacWorks, are now where
they should be.

66 MacTech Quarterly Spring 1989

“LisaMacWorksPlusDevinfo 3.PICT” 527 KB 1999-02-01 dpi: 360h x 363V pix: 2674h x 3719v

The second category of enhancements involved rewriting
the hardware interface. This was also the most time consum-
ing portion of the project. Wherever possible, we built on code
from MacWorks, adding control calls and functionality that
were missing. Unfortunately, this avenue was only open for
the hard disk driver, AppleTalk drivers, and small picces of
the others. The Sony, Sound and Serial drivers were written
from scratch. Every driver in MacWorks Plus now conforms
to the specifications in the five volumes of Inside Macintosh.

One very prominent difference between the 64K and 128K
ROMs — the handling of device drivers in the ROM — also
had a major impact on our implementation of a new hardware
interface. In the 64K ROM, drivers are simply code resources
that have hard vectors installed in the unit table. Fonts and
cursors are stored in the same fashion, as well as other system
information. However, in the 128K ROM Apple decided that
since these things are resources anyway, they should be stored
as resources. Hence, the memory from $004176F8 to
$0041FFFF on a Mac P’lus mimics an open resource file, and
special hook flags were set up at $00000B9E and $00000B9F to
access it.

Obviously, all of this information, including the ROM
resource file map, is hardcoded. The longword at $0040001E
points to the start of the ROM resource file map, which has a
format that differs greatly from standard maps. Then the
resource data begins and continues until the end of the ROM.
We decided that the simplest way to implement our device
drivers was just to generate our own complete ROM resource
file and append it to the MacWorks Plus emulator. We
included all of the generic resource types in the 128K ROM
like CRSR, FONT, MDEF and WDEF, and then linked in our
own. For example, the Sun Remarketing logo which appears
during bootup is stored as a PICT in the ROM resource file. A
highly problematic piece of code was then developed to
render this standard resource file into a ROM image file and
append it to the MacWorks Plus ROM image. We were highly
successful with this technique. Again, we chose to do a little
extra work to perfect the emulation rather than to kludge it
and risk incompatibilities.

Performance improvements are largely the province of the
operating system, the third category of enhancements. There
are two types: new features and upgraded features. New
features include the HFS File Manager, SCSI Manager, List
Manager, and all of the other system trap calls introduced in
Inside Macintosh Volume V. Upgraded features include
rewrites of several slow subroutines, including Quickdraw
calls. While these operating system enhancements are the
most visible of the differences between MacWorks P’lus and its
predecessor, they also took the least amount of time to
complete. Since all of the MacOS that the user sees is not
hardware dependent, it can be moved between machines with
little effort. For example, SCSI support is one of the most
dramatic improvements for the Lisa, but it took perhaps the
least effort of all from a software standpoint. So long as the
SCSI address lines are mapped into precisely the same
locations in the Lisa as they are in the Mac, then almost no
code needs to be rewritten to support it.

Issues for Developers A Any application you write for the
Macintosh should work under MacWorks Plus subject to one
proviso: Follow the rules. There are many software packages
which do not adhere to the guidelines set forth in liside
Macintosh, and thanks to a great deal of determined cffort and
some clever system patches they will now run ona Lisa. In
becoming something of an expert in tracking down such vio-
lations, it is my experience that they generally fall into two
categories: environment checks and hardware interfaces.
Those of you who read comp.sys.mac.programmer have
already seen my tirade about non-standard environment

L & Apple Lisa Computer Technical Information

Page 0004 of 0005 |

& Apple Lisa Computer: MacWorks Plus Developement Information

checks, so | will be brief. There are many applications which
don't bother to use _SysEnvirons to determine the runtime en-
vironment, either because it is quicker to read the low-
memory global, or because _SysEnvirons is incomplete. A
good example is the direct check for a floating-point coproces-
sor at $00500000 that new Microsoft applications perform.

Hardware interfaces are the second problem area. There
are applications, for example, which directly reference the
VIA chip in the Mac. On a Lisa, the VIA is in a different
location, and so the low-memory global which points to it is
also different. However, the address of the VIA in a Mac Plus,
$O0EFFFFE, is the same as the address of the screenbase
register on a Lisa. As you might imagine, this generates some
very pretty crashes.

1 cannot stress enough that this is a Macintosh issue as well
as a Lisa issue. Given the impending release of System
Software 7.0 when context switching may become reality and
references to low-memory globals may cause privilege
violations, it is smart programming practice to depend as little
as possible on the physical environment. It is true that Apple
Developer Technical Services has not been consistent in its
positions. But that in-and-of-itself is not a reason to disregard
their current recommendations. Besides, I'd rather have the
inconsistent positions and volumes of accurate technical infor-
mation that you get from Apple than the volumes of inaccu-
rate technical information and total absence of developer
support that you get from 1BM.

The opinions just presented were not paid for by Apple
Computer.

Environment Checking and Debuggers A If for some reason you
do need to determine if you are on a Lisa, _SysEnvirons will
no longer do it. SysEnvirons will return a Mac Plus. If the
following comparison is true, then you are running on a Lisa:

CMPI.L Lisa check

#"MACW’ ,$00400040;

MacWorks Plus

Finally, a few words need to be said about the use of
debuggers under MacWorks Plus. The popular debuggers
MacsBug V5.5, Nosy Debugger, and TMon V2.xx all work off-
the-shelf. Nosy and TMon need no modification to run, and
MacsBug requires only a replacement of the keyboard input
routine. This done to the memory image during system
bootup to aveid requiring a special version. And of course,
since MacWorks Plus is a robust implementation of the 128K
ROM, the ROM debugger is also available by pressing the
NMI button on the back of the Lisa.

Why MacWorks Plus! Matters to Developers A Software develop-
ment is a very [/O bound activity. As programmers, our
productivity increases at a rate inversely proportional to the
compile-link cycle time. Those who use our applications also
benefit when we make sure that they are robust and non-
hardware dependent. The Lisa with MacWorks Plus can make
important contributions in both of these areas. As a heavy
user of both Lightspeed C and MPW, [have been won over by
the speed difference between my Lisa and my Macintosh SE.
On compile-link cycles of 30 seconds or more, the Lisa witha
Sun internal 20MB or 40MB hard disk is always faster than the
SE with any hard disk whose access rate is over 30ms. To
compile MacWorks Plus from scratch under MPW takes 20
minutes on the SE and 17 on the Lisa. The 1/O difference is
even more pronounced given that the Lisa is running 3Mhz
slower than the Mac.

A Lisa with MacWorks Plus is also valuable as a sort of
ToolBox Verification Suite, and is far cheaper than a Mac Il
with A/UX™. Its 12-inch screen is a godsend for using multi-
window development systems effectively, especially if a large
monitor and a video card are outside your budget.

Acknowledgements A Though I performed all of the develop-
ment work for MacWorks Plus, I am deeply indebted to a
number of individuals, without whom it would not have
happened: Bob Cook and Dale Gilbreath of Sun Remarketing;
Dave Ramsey, Dan Allen, Steve Schwartz, Rich Castro and the
Mac ROM team at Apple; Dave Heinen, Steve Jasik, Sam
Neulinger, and Bruce Auerbach. Finally, a very special thank
you goes to Harold Stuart for code suggestions, Lisa hints,
shared Lisa frustrations, people pointers and for finding
something new to show me each day in Logan, Utah fora
month.

Clutick Lukaszewski is the president of Open Systems Architects,
Inc.™ , a Minneapolis-based firm that plans, installs and manages
computer data networks for corporate clients. In addition to his Lisa
and Macintosh work with Sun Remarketing, he has developed appli-
cations software for and managed a Gould high-speed image
processing systen at the Minnesota Supercomputer Institute, and
authored software for a variety of other organizations around the
Twin Cities. His opinions about Intel microprocessors versus
Maotarola microprocessors are, well, his own.

Spring 1989 MacTech Quarterly 67

’ : “LisaMacWorksPlusDevInfo 4.PICT” 412 KB 1999-02-01 dpi: 360h x 363v pix: 2717h x 3790v
| @ Apple Lisa Computer Technical Information Page 0005 of 0005
S

